
J .  Fluid Mech. (1971), vol. 47, part 4, pp .  639-656 

Printed in Great Britain 
639 

Experimental evidence of waves in the sublayer 

By W. R. B. MORRISON,? K. J. BULLOCK 

AND R. E. KRONAUER 

Department of Mechanical Engineering, University of Queensland, Australia 

Harvard University, Cambridge, Mass., U.S.A. 

(Received 28 April 1970 and in revised form 8 January 1971) 

Two-dimensional frequency-wave-number spectra @(lC,, w )  and Cp(kz, w )  of the 
longitudinal velocity component are presented for the sublayer in fully developed 
turbulent pipe flow, a t  Reynolds numbers between 10600 and 46400. All of 
these sublayer spectra apparently scale by introducing dimensionless quantities 
based on a characteristic length scale vlU. and a characteristic time scale vIUg. 

Representative convection velocities have been obtained from the @(rC,, w )  
specbra. The characteristic convection velocity in the sublayer is independent 
of wave-number and is the same at all positions in the layer c, 21 S.OU,. This 
result has led to the conclusion thati sublayer turbulence is wave-like. 

Existing visualization data seem to indicate that the sublayer waves are also 
relatively periodic at least at low values of Reynolds number. Characteristic 
dimensions of the sublayer waves are A,+ N 630, and A$ = 135. Results of the 
visualization studies of Fage & Townend (1932) and of Runstadler, Kline & 
Reynolds (1963) and Kline et al. (1967) do not appear to conflict with a wave 
model for the sublayer. 

All of the existing measurements of the sublayer have been for relatively 
low Reynolds numbers. Some of tihe present results for positions just outside 
the sublayer suggest that at Reynolds numbers greater than 30 000, the structure 
and properties will change substantially from those observed to date. In  par- 
ticular the streaky structure which is commonly regarded as being Characteristic 
of the sublayer will probably not be detected a t  sufficiently high Reynolds 
numbers. 

Introduction 
The viscous sublayer has been the subject of numerous experimental and 

theoretical investigations and many models of its structure have been proposed. 
One of the earliest observations was made by Fage & Townend (1932) using an 
ultramicroscope. They found t.hat the sublayer was not truly laminar and that the 
ratioof the (r.m.s.)velocityfluctuation, to the mean velocity, reached a maximum 
near the pipe wall. 

Hot-wire measurements of Laufer (1954) also demonstrated that the sublayer 
was not laminar but more importantily they showed that the production and 

t Present address: Oceanics Australia, Brisbane, Australia 
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dissipation of the turbulence reached maximum values in the vicinity of the 
sublayer edge. 

Einstein & Li (1956) studied the sublayer by injecting dye a t  bhe wall of a 
pipe. They observed that dye filaments after moving along the wall would 
suddenly erupt into the bulk of the flow and from this they postulated that the 
sublayer periodically grew and decayed. An erupting sublayer model was also 
proposed independently by Hanratty (1956). 

The most detailed visualization datia for the sublayer has been collected by 
workers from Stanford University. Kline & Runstadler (1959) used dye injection 
techniques and Runstadler, Kline & Reynolds (1963) used a hydrogen bubble 
method as did Schraub et al. (1965). Their most important observation was that 
the sublayer exhibited a remarkably regular and almost periodic variation in 
velocity across the flow. Within the sublayer the dye or hydrogen bubbles 
confxacted to form regularly spaced ‘streaks’ of low velocity fluid. These streaks 
were found t o  move slowly away from the wall as they progressed downstream, 
undergoing transverse oscillations. Some of these streaks were ejected into the 
bulk of the flow. 

A common feature of many of the models proposed for the flow in the sublayer 
and wall adjacent regions is a streamwise vortex attached to the wall. Such eddies 
were first suggested by Townsend (1956) as being the dominant large eddy in the 
flow. Runstadler et al. (1963) noted that the streak breakup process which occurs 
outside the sublayer was associated with longitudinal vorticity and in a report of 
a recent study of the viscous sublayer in a pipe, Bakewell & Lumley (1967) 
suggest that contrarotating pairs of streamwise vortices are the predominant 
feature of the sublayer and adjacent region. 

The propagation of wave disturbances in the sublayer has been studied analy- 
tically (Sternberg 1962,1965; Schubert & Corcos 1967). In  all cases, however, the 
concept was one of a turbulence field external to the sublayer ‘driving’ the 
oscillations of the sublayer, and the analyses are valid only for a wave speed well 
in excess of the local fluid velocity. The wave disturbances described here convect 
with a characteristic velocity which matches the fluid velocity near the edge of 
the sublayer itself and cannot be described by these theories. It should be noted 
that the calculations of Schubert & Corcos give a turbulence velocity component 
normal to the wall in the sublayer almost two orders of magnitude below that 
which is experimentally observed. The explanation is that the calculations were 
performed for wave disturbances whose characterisbic size was matched to the 
dominant structure in the log-layer. In  fact, to achieve the observed magnitude 
for this velocity component it is necessary that the waves be of the small size 
described here.? 

The dimensions of the zone termed the sublayer are not universally accepted 
but the edge is generally taken to be a t  a value of yf between 5 and 10. Thus the 

t This follows simply from the continuity equation. Since the normal component of 
turbulence is zero at  the wall, in order for it to  attain its observed magnitude at  y+ = 12 
(approximately +U7) the turbulence velocity parallel to the surface must have a large 
divergence in that plane. Since this parallel component is about five times as large as the 
normal component a dominant wave-number, kvlU,, of order 0.05 can be inferred. 
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thickness of the layer is in general very small and the finite size of a transducer 
makes the experimental investigation of the sublayer very difficult. One com- 
monly accepted way of increasing the thickness of the layer is to reduce the 
Reynolds number of the flow. However, it is then impossible to be sure that the 
results found will apply to larger Reynolds numbers. In  fact the majority of all 
sublayer investigations (including the investigation reported here) have been 
for quite small Reynolds numbers and it is likely that the characteristics of the 
sublayer identified to date are only characteristic of low Reynolds number flow. 
Some of the results presented here seem to confirm this view. 

Some new measurements in the sublayer 
The sublayer measurements described here were made in air, in a tube of 

5.24in. inside diameter, at a position 64 diameters from the inlet. A t  the test 
section the flow was turbulent and fully developed. The measurements form part 
of a much larger experimental programme which was designed to investigate 
flow structure in the wall region of pipe flow. 

Two-dimensional frequency-wave-number spectra, @(kx, w )  and @(kz, w ) ,  of 
the longitudinal velocity componenb were measured, being generated? by 
Fourier transforming nmow band spatial correlations R,(z) and B&). These 
correlation functions were obtained using two hot-wire anemometer probes and 
two constant-current hot-wire anemometers. The hot wires were located at the 
same distance 9 from the wall, separated by distances x or z in the longitudinal 
or transverse directions respectively. The wires were normal to the mean flow 
and thus measured the longitudinal velocity fluctuations u. Further details of 
the experimental techniques and the complete results are described by Morrison 
(1969). Some of the two-dimensional spectra results reported here have been 
presented previously in another context by Morrison & Kronauer (1969). 

All spectral densities are presented here as products of power density and the 
corresponding wave-number and frequency. Two-dimensional spectra, for in- 
stance, are presented as quantities Y(?cs, w )  or 9 ( k z ,  w )  defined as 

9 ( k z , w )  = kx .w .aqkz ,w) ,  

Y ( k z ,  w )  = Ic,.o. @(ka, w ) .  

One reason for adopting this type of presentation is that the significant ranges 
of kx, kz and w span several decades and need therefore to be plotted on logarithmic 
scales. If linear scales are used for the spectral densities B(Lx, w )  and 9 ( k z ,  w )  
the energy in a particular frequency-wave-number band is directly proportional 
to the volume under the spectrum in this band and may be assessed directly. 

t Two-dimensional spectra generated this way are restricted to one quadrant (positive k 
and w for example) and they represent disturbances with both positive and negative con- 
vection velocities (see, for example, Wills 1964). In the case of @(lc,, O )  this does not matter 
because the energy in disturbances propagating in either z direction must be equal from 
symmetry considerations. @(k,, w ) ,  on the other hand, represents mainly disturbances propa- 
gating downstream but includes a small unknown component due to disturbances propagating 
upstream. Disturbances travelling upstream can be separated by measuring the quadrature 
spectra. 

41  F L M  47 
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In  addition the spectra used here are normalized so that the total volume is 
unity and 

jIOw @(kx, w)  dkx dw = Y ( k x ,  w )  d In kxd In o = 1.0. 

Two-dimensional spectra also provide an appropriate basis for the definition of 
convection velocity (see Wills 1964). A point (k, w )  in frequency-wave-number 
space can be associated with a phase velocity c of wlk. Where two-dimensional 
spectra are presented with frequency and wave-number on logarithmic scales, 
then lines of constant convection velocity are straight lines of unit slope. A 
characteristic convection velocity which can be associated with a particular 
wave-number or a particular frequency is defined here from the co-ordinates of 
the 'ridge line' of Y ( k ,  w ) ,  on a In w ,  In k plot. 

All of the quantities used in the presentation of the results have been made 
dimensionless by introducing appropriate length and time scales. In  doing this 
it has been assumed that the sublayer is controlled by the shear velocity U, and 
the kinematic viscosity v so that the length scale used is u/U, and the time scale 
is v /  Uj72. The following dimensionless variables are used: 

y' = yu,/v; of = wv/u:; 

c,' = cx/u,;  @ = c , /q;  

k,' = kxv/U, = o+/c;; k,+ = k2v/U7; 

A,+ = hxU,/v; h,f = A,U,/v. 

The two-dimensional spectral density results for the sublayer positions are shown 
in figures 1-7 and the flow conditions corresponding to these results are given in 
table 1. 

Re = U,a/v U, (ftlsec) Y (in.) Y b  Y+ 
9 ( k s ,  o) data 

10 700 0.43 0.007 0.00257 1.56 
17 100 0.60 0.010 0.00382 2.96 

0-020 0.00763 5.92 
46 400 1.48 0.010 0.00382 7-30 

B(k, ,  w )  data 

10 500 0.43 0.007 0.00257 1.52 
17 100 0.58 0.010 0.00382 2.96 

0.020 0.00763 5.93 

U, = centre-line velocity. a = radius of the tube 2.62in. 

TABLE 1. Flow conditions corresponding to two-dimensional spectra 
measurements in the sublayer 
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Characteristic properties of the sublayer 
The available data show that the use of viscid scaling in the sublayer may be 

appropriate since the two-dimensional spectra g ( k $ ,  w+) (figures 1-3) and 
S(rE,+, a+) (figures 5-7) both seem to be unique functions for the region. However, 
9 ( k , + ,  w+) at y+ = 7.3 (figure 4) exhibits distinct deviations a t  low frequencies and 
low wave-numbers. The deviations at this y+ could be due to trhe proximity of 
the sublayer edge, but it is more likely that they are due to a Reynolds number 
effect and this is discussed later. 

11 0.01 0.1 

Wave-number k: 

FIGURE 1. Two-dimensional spectra 
B(k:, w+) for Re = 10700, y+ = 1.56. 

0.00 I 0.01 0.1 

Wave-number kf 

FIUURE 3. Two-dimensional spectra 
B(kf, w+) for Re = 17 100, y+ =*5.92. 
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FIUTJRE 2. Two-dimensional spectra 
B(k:, o+) for Re = 17 100, y+ = 2.96. 
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FIGURE 4. Two-dimensional spectra 
B(k: ,w+) for Re = 46400, y+ = 7.3. 
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Wave-number k,f 

FIGURE 5. Two-dimensional spectra 
P(k:, uf) for Re = 10500, y+ = 1.52. 
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FIUURE 6. Two-dimensional spectra 
P(k: ,w+)  for Re = 17 100, y+ = 2.96. 
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FIUIJRE 7 .  Two-dimensional spectra p(lc;, o+) for Re = 17 100, y+ = 5.93. 
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If for the moment the sublayer is regarded as being independent of Reynolds 
number then ib is possible to assign characteristic dimensions corresponding to 
the maxima of P(k$, o+) and B(k$,  of). The following approximate values are 

obtained: k,f = 0.047, A$ = 135,f 

le,' = 0.010, A: = 630. 

I I 
0.00 1 0.01 0.1 

Wave-number k: 
FIGURE 8. Non-dimensional convection velocities in the sublayer. 

Y+ u, (ft/@N Re 
0 1.52 0.43 10 500 

2.96 0.58 17 100 
n 5.93 0.58 17 100 

r 

1.0.1 I I 
0.001 0.01 0.1 

Wave-number k,+ 
FIGURE 9. Convection velocities in the sublayer normalized on mean stream velocities. 

Symbols same as figure 8. 

The transverse wave-number is relatively well defined since the 'ridge line' 
of the a(@, w+) plots tends to be almost parallel to  the of axis. On the other 
hand, the P ( k $ ,  of) plots are concentrated about lines of constant convection 
velocity so that the longitudinal wavelength is only weakly defined. In  fact the 

The value of transverse wavelength agrees remarkably well with the most recent 
estimate of streak spacing given by Kline et al. (1967) ash: = 130. 
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P(k2, w+) plots are centred on the one convection velocity. There is, of course, 
a reasonable spread in the observed values but this is identically repeated a t  
all positions in the layer. 

To demonstrate the trend in convection velocity more clearly, specific values 
have been obtained from the 9'(k$, w )  plots (using the co-ordinates of the ridge 
line of Y(k,+,  w ) )  and replotted showing c,' as a function of wave-number k;. 
The data is presented at  c,' in figure 8 and as c,/U (normalized on the local mean 
velocity) in figure 9. Because c,' is relatively constant (approximately c,' = 8.0) 
c, is greater than the local mean velocity for positions close to the wall. At the 
closest position to the wall (y+ = 1-56) disturbances on the average travel at 
about five times the local mean velocity and an examination of figure 5 shows that 
at  least 99 % of the turbulent energy is accounted for by disturbances propagating 
at  speeds a t  least twice the local velocity. 

Because the convection velocity c,' and the longitudinal wave-number k$ 
(for maximum P) are relatively constant, it is also possible to assign a charac- 
teristic frequency w+ to the sublayer. The present results indicate a value of 
w+ = 0.07 for this frequency. 

From the estimates of transverse and longitudinal wavelengths A,+ and A,+ 
it is possible to calculate an average angle of propagation for disturbances. If /3 
is the angle between the disturbance wave front and the flow direction then 
tanp  = h,f/A: and an average value for the sublayer would be tan@ 1: 0.21, 
/3 2: 1 2 O . t  Sublayer disturbances are therefore quite steeply inclined to the flow. 

Wave model for the sublayer 
The longitudinal turbulent velocity field at  a given y, u(x,  2,  t ) ,  is a random 

function which is statistically stationary in all of its arguments. Taking Fourier 
transforms of u with respect to these arguments (or transforms of the correla- 
tions of u) leads to a mathematical description of the velocity field as a sum of 
wave components which may not necessarily have any special physical relevance. 
A wave, in a physical sense, must have the periodic motions co-ordinated at 
different y locations. To demonstrate this co-ordination unambiguously would 
require measurements of u to be made simultaneously a t  different y, i.e. an 
experimental programme an order of magnitude more extensive than that 
reported here. 

What the data here show is that at all y throughout the sublayer the spectral 
composition of the u velocity field is virtually identical. In  particular, the dis- 
turbances close to the wall possess a dominant phase velocity of 8U, which corre- 
sponds to the average fluid velocity at  y+ E 9. Add to this the well-known fact 
that the root-mean-square magnitude of the u fluctuations is so large (30 yo of 
local mean velocity) that large displacements of fluid normal t o  the surface are 
surely taking place. It is then highly probable that the fluctuations of u are 
strongly co-ordinated throughout the sublayer. In  fact it is difficult to conceive 
of any mechanism that would produce disturbances a t  y+ = 1 propagating at a 

t Care should be exercised in assigning any real physical relevance to this value. 
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phase velocity of 8U7 which does not couple such disturbances with events much 
further out in the sublayer. 

If the spectral power were sharply concentrated at some particular o, k,, kz 
set, then it would be possible to characterize the sublayer disturbances as a 
simple harmonic wave of a particular size, inclination and speed. Actually the 
spectral power is spread out and as a result the waves cover a range of sizes, in- 
clinations and speeds. Of these three the most sharply defined is the speed, since 
almost two-thirds of the power is concentrated in a range of speeds between 
SU, and 12U7. The property next most sharply defined is the size of the waves, 
which is related to the total wave-number, ktot, 

ktot = (k t  + k2,)). 

Now, since k i  is found to be typically an order of magnitude smaller than ,kz 
it follows that the size of the waves is given closely by 2n-/kZ. Then from figures 1-3 
it is seen that more than two-thirds of the wave power lies in a wave size range 
of about 4 : 1. The range of wave inclinations (which can be estimated from the 
range of the ratio of w+ to lc:) is seen to cover a t  least a decade. 

It was observed earlier that considerations of symmetry lead to the expectation 
of waves propagating with equal ease in positive and negative circumferential 
directions. Waves of both types will generally be occurring simultaneously and 
it is worth considering the visual aspect that this combination will present. 
If, for simplicity, we consider two pure harmonic waves with the same w and k,, 
but with kz of opposite sign, an equal combination of these will generate a wave 
pattern which is ‘standing’ in the z co-ordinate but propagating in x with a 
velocity o/k,. Then at a fixed x location, the appearance will be that of a tempor- 
ally modulated periodic structure in z displaying no obvious propagation in z. 
Of course such precise symmetry is improbable and the actual appearance would 
contain some mixture of standing and propagating waves. 

Review of existing visualization data 
It is interesting to review the existing visualization data for two reasons; first 

to  see how well these results support a wave model for the sublayer, and secondly 
to examine why it is that propagation velocities very much greater than the 
local mean have not previously been detected. 

Before examining the data it is well to have fixed in mind the kind of results 
which would be expected if the turbulence motions are wave-like and how they 
compare with the motions which would be observed for a stationary pattern of 
streamwise eddies. Figure lO(a) is a sketch of the stationary streamwise eddy 
flow with alternate regions of upwelling and downwelling. The characteristic 
features of this flow are large cyclic excursions of particles toward and away 
from the walls, and virtually no time variation of velocity a t  any fixed point in 
tihe flow. Figure 10(b) shows the secondary motions which would be seen at a 
fixed station x if the periodicity in z is generatied by two equal waves propagating 
in opposite z directions. Within this pattern, points located a distance *A, apart 
oscillate out of phase. Similarly, shifting to a station downstream a distance $A, 
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will produce an identical pattern but with a shift of n in bemporal phase. In  
comparing figures lO(a) and 10(b) it  should be noted that both flows represent 
co-ordinated motions throughout the sublayer, buti since the wave pattern is 
oscillatory, the transverse displacements of fluid particles can be expected to 
be much less than the A$ which characterizes the pattern as a whole. 

Laminar Turbulent 
8=+7" 

..+ 

Flow noriiial to Flow parallel to Flow parallel 
\vaII,O,,.= i- 10" wdl,O,;= +27" to wall, 

O w -  of order + 70" 

lnstantaneous 
secondary 

flow 

/ - \ - \ Particle trajectories 

k - 2  @) ///,///,/////// //,,/////,, ,/// ,(end elevation) 

FIGURE 10. (a)  Stationary streamwise eddies. (b)  Secondary motions 
in a temporally modulated standing wave pattern. 

I Stationary objective I 
I I to wall 

Flow very close Flow at  centre of pipe ~ / s = 0  Flow at y/s=0.95 I 

FIGURE 11. Visualization results of Fage & Townend (1932). 
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Consider now the relevant results of Fage & Townend (1 932) reproduced in 
figure 11. Clearly for positions very near the wall particle motions are quite 
periodic. This cannot be ascribed to circulation about a stationary vortex because 
with the large displacements required normal to the wall the particles would 
pass out of focus. Assuming then that the motion is due to the passage of waves 
through the sublayer, individual tracer particles will follow roughly sinusoidal 
paths, but the wavelength of this particle motion, A,,, (indicated by the path- 
lines) will in general be different from the actual wavelength A, of the basic wave 
disturbance. The ratio of A,, t o  A, will simply be the ratio of the local mean 
velocity, U ,  to the convection velocity c,.t 

In  this data the lines sketched are pathlines only and there is nothing to 
indicate the dimensions of the basic wave motions. From their data at  the posi- 
tion closest bo the wall it is possible to estimate an average particle motion 
wavelength of A:, N 6.0, whereas the average wavelength A, estimated from the 
(k;, w+) data presented here is A,+ E 630. It is, however, possible to calculate A,f 
from Fage & Townend’s results by estimating an average mean velocity which 
would correspond to their data closest the wall (all particles less than yf = 0.4 
were in focus) and by assuming that the convection velocity for disturbance is 
S-OU, as suggested by the present results. Using a value of u+ = 0.2 then 
A5 = A&. c;/uf N 240, which is at least of the same order of magnitude as the 
value obtained here from the two-dimensional spectra. 

The hydrogen bubble and dye injection studies reported by Runstadler et al. 
(1963) and Kline et al. (1967) must be considered differently, since each photo- 
graphic frame is a collection of streaklines and not particle paths. Typical 
hydrogen bubble photographs from Kline et aZ. (1967)$ are reproduced in 
figure 12 (plate 1) and a typical dye filament photograph which has been ex- 
tracted from the movie film by Runstadler et al. (1963) is reproduced in figure 13 
(plate 2). First consider the events occurring jusb at  the marker source when it is 
deep in the sublayer. A motion of the fluid toward the solid boundary at  some 
point on the marker line is accompanied by: (i) a longitudinal velocity higher 
than the local mean because high velocity fluid is being brought down from 
further out, and (ii) a divergence of the secondary flow field when viewed toward 
the wall. The opposite effects occur when fluid moves outward from the solid 
boundary; the longitudinal velocity is reduced and the tracers are converged 
into the characteristic distinct streak. All of these are clearly visible at the 
hydrogen bubble wire in figure 12. For reasons which will soon be detailed, it is 
best not to use the name ‘streak’ for this region of marker convergence, but 
rather ‘concentration zone’. 

Next consider the subsequent history of the fluid in the concentration zone. 
It will move downstream slowly (compared with the longitudinal wave speed of 
8U,) and as the wave field moves past events will reverse themselves. That is, 

t It is feasible to make the distinction between A,, and A, from a movie film if combined 
time and streak markers are used, but the analysis is quite tedious and is virtually impossible 
by eye in real time. 

Actually only three of these photographs appears in the published paper. The photo- 
graph for y+ = 6.6 was kindly supplied by Professor Kline. 
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the concentration zone will at a later time be in a region of transverse spreading 
flow which disperses the tracer. Of course complete reversal is impossible and 
evidence of the original concentration will remain, but in a ragged form. At the 
same time new concentration zones are being laid down at the wire in between 
the original locations. In  an idealized regular and symmetrical wave field the 
concentration pattern should look like figure 14 (a).  If, however, the wave propa- 
gating in one direction were to be temporarily stronger than the opposite 

r M a r k e r  source 
+.I: -+ 

(4 

Flow direction 
X+ 

FIGURE 14. Pattern of concentration zones for (a) a symmetrical wave 
system; ( 6 )  a non-symmetrical wave system. 

propagating wave, the pattern would look like figure 14(b). The y+ = 2.7 photo- 
graph of figure 12, asld sections of figure 13 show evidence of the behaviour 
sketched in figure 14(a). The y+ = 4-5 photograph of figure 12 resembles figure 
14 (a),  only on the right side, and resembles figure 14 ( b )  on the left side. 

The kinematic relationships necessary to interpret concentration diagrams 
are naturally different from those used in particle path diagrams. Figure 16 is 
a propagation diagram from which it is concludedthat the ratio of the longitudinal 
wavelengbh seen in the concentration diagram, A& to the true wavelength is 
given by 
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Applying this to they+ = 4.5 photograph of figure 12 with U+ N_ 4UT and c s  N SU, 
it follows that the apparent longitudinal wavelength is very close to the true A:. 
From the slope of the streaks in the left side of this photograph, A$ N 5h,f which 
is in excellent agreement with the data reported here. For the y+ = 2.7 photograph 
it would be expected that 

There is some weak evidence to support this ratio. 

Stream direction 

X+A 
Wave speed, 

slope=cf 

slope= 

t 

Time 

I / 

Concentration 
pattern 

wavelength V+ 

speed, 
U+ 

FIGURE 15. Propagation diagram for waves in the sublayer. 

Figure 13 provides a better example of the concentration patterns than figure 12 
because the dye provides a denser and therefore more persistent marker than 
hydrogen bubbles. At one side of the flow A& N 7A,f and at  the other side it is 
about 9A:. Using A$ = 5A,f and working backward through the kinematic rela- 
tion for A&/h,+ gives c:/U+ of 1217 and 1419 respectively. For c,f = S U ,  this 
implies U/UT (i.e. y+) of 4-7 and 5.1. While the dominant y+ location of the dye 
being photographed is not known accurately, other figures in that report 
(numbered 35c and 3 5 4  show dye ‘streaks’ at y+ of about 5. Also, the authors 
state (page 55)  that ‘streaks’ form in the wall layers, 0 < yf < 10, and for the 
most part break up in the zone 10 < y+ < 40. 

Note that in the formation of concentration pabterns 6here are two conflicting 
effects at work. Since the turbulence has c,‘ N SU,, the wave centres are near 
y+ = 9. Thus, while there may be large displacements of fluid normal to the wall 
at this y+ there will be very little of the spanwise flow, necessary to produce 
marker concentration (cf. figure 10 (b ) ) .  This is confirmed in the figure 12 sequence 
where the concentrations are noticeably most weak at  yf = 9.6. On the other 
hand, at  very low y+ where the wave speed is most different from the local fluid 
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speed and A& is very small, the pattern will not persist very far in the stream 
direction. Therefore, concentration patterns which are both strong and persistent 
must be found at intermediate y+ (say, 4 to 6). 

It is important to note that a single line in the inclined concentration pattern 
of figure 14(b )  is not made up of fluid passing by a single point on the bubble 
line and therefore is not a streak line. By misinterpreting such a line to be a 
streakline it is easy to find evidence for stationary streamwise eddies in a flow 
field where they do not in fact exist. 

Before leaving the visualization data, some comments on the existence of 
streamwise vorticity are in order. Both the stationary streamwise eddy and the 
wave pattern contain regions of a strong vorticity in the centres of the secondary 
circulation. The important difference between the two cases is thati the vorticity 
oscillates and periodically reverses sign in the wave pattern. The concentration 
zones in the wave pattern are regions of very low vorticity at  all times. 

Runstadler et al. (1963) made a particular effort to detect vorticity in con- 
centration zones, mainly to support a previous postulate (Kline & Runstadler 
1959). It is not surprising that they were forced to conclude “However the in- 
terpretation of the streak formation and break-up in terms of vortices is neither 
confirmed nor denied. Study of the flow in the streaks prior to the break-up when 
the pattern was as large as it could be made. . . did not show any clear evidence of 
vorticity in the streak prior to break-up. Thus the swirling in break-up may be due 
to the nature of the interaction process in break-up rather than to the streak 
pattern itself.” 

Effect of Reynolds number 
Virtually all of the existing measurements and visualization studies of the 

sublayer including the results described here have been made for very low 
Reynolds numbers (see table 2). It is quite probable that the characteristics and 
dimensions of the sublayer which have been observed to date may only apply 
for these low Reynolds numbers. Indeed some of the results of the present study 
which were taken at  positions just outside the sublayer tend to indicate that the 

Author Re U, (ft/sec) Fluid 

Wage & Townend (1932) 3 400 
Laufer (1954) 25 000 
Einstein & Li (1956) 3 850 

Bakewell & Lumley (1967) 4 350 
Present data 10 700 

17 100 
46 400 

Kline (1967) 11 100 

0.061 Water 
0.42 Ail- 
0-024 Water 
0.0145 Water 
1-28 Glycerine 
0.43 Air 
0.60 
1.48 

Re = U,a/v for a pipe, a = pipe radius, U, = centre-line velocity; 

= Urn Slv for boundary layer. 

TABLE 2 
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character of the sublayer will change radically at  Reynolds numbers above 
about 30000. Two-dimensional power spectra P(k$, w )  are presented in figures 16 
and 17 for positions a t  virtually the same y+ (y+ = 14-6 and 13-9) but at two 
different Reynolds numbers (46400 and 96500). By comparing these two results 
it can be seen that increasing the Reynolds number has had the effect of increasing 

f 0.1 - 
3 
h g 
$? 6 0.01 - 

I I I I 
V~0001 0.001 0.01 0.1 

Wave-number k z  

FIGURE 16. Two-dimensional power 
spectra B(k:,o+) for Re = 46400, 
y+ = 14-6. 

I I 

Wave-number kf 

FIGURE 17. Two-dimensional power 
spectra P ( k $ ,  w+) for Re = 96500, 
y+ = 13.9. 

the relative amount of low frequency, low wave-number (k:) energy. Most 
probably this additional energy will also appear within the sublayer itself and 
evidence for this is contained in figures 16 and 4. These latter P(k$, w )  are for 
the same Reynolds number and it can be seen that the distribution of energy 
a t  thesublayer edge ( y f  = 14.6) isvery little different from the distributionwithin 
the layer (y+ = 7.3). It seems very likely that figure 4 differs from that of figures 1- 
3 because of a Reynolds number effect and not because figure 4 corresponds to 
a position closer to the sublayer edge. The universality of shape of B ( k z , w + )  
and Y ( k $ ,  w+) and of various one-dimensional spectra as observed by Morrison 
(1969) and Bakewell & Lumley (1967) may be a feature of the sublayer only 
at low Reynolds numbers. 

The additional low frequency, low wave-number energy which becomes 
significant at  higher Reynolds numbers results from disturbances which convect 
at velocities much greater than the characteristic sublayer velocity (8*OU,). This 
can be seen from figure 18 where P(k; ,w+) at y+ = 14-6 is presented. The low 
frequency, low wave-number energy has an average convection velocity of about 
leu,. 

If the sublayer acquires a broader range of wave-numbers as the Reynolds 
number is raised, a significant change in visualization patterns can be expected. 
In  particular the 'streaky' structure of the sublayer as observed by Runstadler 
et ab. ( I  963) (which undoubtedly is related to the low Reynolds number B(kz, w+), 
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P(k;, w+) data presented here) will probably become less important as Reynolds 
number increases and they may become completely indistinguishable at suf- 
ficiently high values. 

0~0001 0.001 0.01 0.1 

Wave-number k: 

FIUTJRE 18. Two-dimensional power spectra,g(k:,o+) for Re = 46400, yf = 14.6. 

Conclusions 
At low Reynolds numbers it is appropriate to scale turbulence quantities in 

the sublayer by introducing a characteristic length scale of v/U, and a charac- 
teristic time scale of v/ Ug. This means that two-dimensional and one-dimensional 
spectra when appropriately scaled are universal functions for the sublayer. 

Two-dimensional P(k& w+) spectra indicate that the convection velocity is 
constant throughout the sublayer and this result requires that disturbances in 
the sublayer must be wave-like. In  fact at  low Reynolds numbers it is likely that 
the sublayer consists of relatively periodic waves. These waves propagate equally 
in both transverse directions and from existing visualization data seem to be 
limited in spatial extent., probably to something less than three to four wave- 
lengths . 

It is possible to specify average properties for the sublayer waves from the 
two-dimensional g(lc2, w+) and P(k,+ ,  w+) spectra, and the following charac- 
teristic values have been estimated: 

longitudinal wavelength h,f, = 630; 
transverse wavelength = 135; 
convection velocity c,' = 8.0; 
critical layer height yo+ 2: 9.0. 
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The value of transverse wavelength agrees very well with the latest estimate of 
streak spacing for a zero-pressure gradient boundary layer given by Kline et at. 
(1967) as A$ = 130. 

A review of the visualization studies reported by Page & Townend (1932), 
Runstadler et al. (1963) and Kline (1967) seems to indicate that a wave model 
for the sublayer would not conflict with any of these results. Average wave 
properties estimated from these data agree tolerably well with the values obtained 
here. 

All of the properties and characteristics of the sublayer observed to date have 
been for low Reynolds number flows. There is evidence in the present results 
that at higher Reynolds numbers (probably greater than abou6 30000) the 
character of the sublayer will be substantially altered, with an increasing amount 
of low frequency, low wave-number energy being introduced. The disturbances 
responsible for this additional energy have propagation velocities much larger 
than that which characterizes the sublayer at low Reynolds numbers. The 
‘streaky’ structure which has been assumed to be characteristic of the sublayer 
will become less important as Reynolds number is increased and it is probable 
that the ‘streaks’ may not be apparent at  all at  sufficiently large values. 

This work has been sponsored by the Australian Institute of Nuclear Science 
and Engineering and by Robhmans of Pall Mall (Aust.) and their assistance is 
gratefully acknowledged. 
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FIGURE 13. Dye filaments at the wall of a boundary layer. From Runstadler et al. (1963). 
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